ON UNITARY UNIPOTENT REPRESENTATIONS OF p-ADIC GROUPS AND AFFINE HECKE ALGEBRAS WITH UNEQUAL PARAMETERS

نویسنده

  • DAN CIUBOTARU
چکیده

We determine the unitary dual of the geometric graded Hecke algebras with unequal parameters which appear in Lusztig’s classification of unipotent representations for exceptional p-adic groups. The largest such algebra is of type F4. Via the Barbasch-Moy correspondence of unitarity applied to this setting, this is equivalent to the identification of the corresponding unitary unipotent representations with real central character of the p-adic groups. In order for this correspondence to be applicable here, we show (following Lusztig’s geometric classification, and Barbasch and Moy’s original argument) that the set of tempered modules with real central character for a geometric graded Hecke algebra is linearly independent when restricted to the Weyl group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functors for Unitary Representations of Classical Real Groups and Affine Hecke Algebras

We define exact functors from categories of Harish-Chandra modules for certain real classical groups to finite-dimensional modules over an associated graded affine Hecke algebra with parameters. We then study some of the basic properties of these functors. In particular, we show that they map irreducible spherical representations to irreducible spherical representations and, moreover, that they...

متن کامل

Representations of rank two affine Hecke algebras

This paper classifies and constructs explicitly all the irreducible representations of affine Hecke algebras of rank two root systems. The methods used to obtain this classification are primarily combinatorial and are, for the most part, an application of the methods used in [Ra1]. I have made special effort to describe how the classification here relates to the classifications by Langlands par...

متن کامل

Modularity Lifting Theorems for Galois Representations of Unitary Type

We prove modularity lifting theorems for l-adic Galois representations of any dimension satisfying a unitary type condition and a Fontaine-Laffaille type condition at l. This extends the results of Clozel, Harris and Taylor ([CHT08]), and the subsequent work by Taylor ([Tay08]). The proof uses the Taylor-Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor, applied to Hecke algebras...

متن کامل

Classification of the Irreducible Representations of the Affine Hecke algebra of Type B2 with Unequal Parameters

The representation theory of the affine Hecke algebras has two different approaches. One is a geometric approach and the other is a combinatorial one. In the equal parameter case, affine Hecke algebras are constructed using equivariant K-groups, and their irreducible representations are constructed on Borel-Moore homologies. By this method, their irreducible representations are parameterized by...

متن کامل

Representations of Graded Hecke Algebras

Representations of affine and graded Hecke algebras associated to Weyl groups play an important role in the Langlands correspondence for the admissible representations of a reductive p-adic group. We work in the general setting of a graded Hecke algebra associated to any real reflection group with arbitrary parameters. In this setting we provide a classification of all irreducible representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008